93 research outputs found

    First Steps Towards Linking Membrane Depth and the Polynomial Hierarchy

    Get PDF
    In this paper we take the first steps in studying possible connections between non-elementary division with limited membrane depth and the levels of the Polynomial Hierarchy. We present a uniform family with a membrane structure of depth d + 1 that solves a problem complete for level d of the Polynomial Hierarchy

    Characterizing PSPACE with Shallow Non-Confluent P Systems

    Get PDF
    In P systems with active membranes, the question of understanding the power of non-confluence within a polynomial time bound is still an open problem. It is known that, for shallow P systems, that is, with only one level of nesting, non-con uence allows them to solve conjecturally harder problems than con uent P systems, thus reaching PSPACE. Here we show that PSPACE is not only a bound, but actually an exact characterization. Therefore, the power endowed by non-con uence to shallow P systems is equal to the power gained by con uent P systems when non-elementary membrane division and polynomial depth are allowed, thus suggesting a connection between the roles of non-confluence and nesting depth

    Characterizing PSPACE with Shallow Non-Confluent P Systems

    Get PDF
    In P systems with active membranes, the question of understanding the power of non-confluence within a polynomial time bound is still an open problem. It is known that, for shallow P systems, that is, with only one level of nesting, non-con uence allows them to solve conjecturally harder problems than con uent P systems, thus reaching PSPACE. Here we show that PSPACE is not only a bound, but actually an exact characterization. Therefore, the power endowed by non-con uence to shallow P systems is equal to the power gained by con uent P systems when non-elementary membrane division and polynomial depth are allowed, thus suggesting a connection between the roles of non-confluence and nesting depth

    Profiles of dynamical systems and their algebra

    Full text link
    The commutative semiring D\mathbf{D} of finite, discrete-time dynamical systems was introduced in order to study their (de)composition from an algebraic point of view. However, many decision problems related to solving polynomial equations over D\mathbf{D} are intractable (or conjectured to be so), and sometimes even undecidable. In order to take a more abstract look at those problems, we introduce the notion of ``topographic'' profile of a dynamical system (A,f)(A,f) with state transition function f ⁣:AAf \colon A \to A as the sequence profA=(Ai)iN\mathop{\mathrm{prof}} A = (|A|_i)_{i \in \mathbb{N}}, where Ai|A|_i is the number of states having distance ii, in terms of number of applications of ff, from a limit cycle of (A,f)(A,f). We prove that the set of profiles is also a commutative semiring (P,+,×)(\mathbf{P},+,\times) with respect to operations compatible with those of D\mathbf{D} (namely, disjoint union and tensor product), and investigate its algebraic properties, such as its irreducible elements and factorisations, as well as the computability and complexity of solving polynomial equations over P\mathbf{P}.Comment: 12 pages, 2 figure

    Non-confluence in divisionless P systems with active membranes

    Get PDF
    AbstractWe describe a solution to the SAT problem via non-confluent P systems with active membranes, without using membrane division rules. Furthermore, we provide an algorithm for simulating such devices on a nondeterministic Turing machine with a polynomial slowdown. Together, these results prove that the complexity class of problems solvable non-confluently and in polynomial time by this kind of P system is exactly the class NP

    Improving Universality Results on Parallel Enzymatic Numerical P Systems

    Get PDF
    We improve previously known universality results on enzymatic numerical P systems (EN P systems, for short) working in all-parallel and one-parallel modes. By using a attening technique, we rst show that any EN P system working in one of these modes can be simulated by an equivalent one-membrane EN P system working in the same mode. Then we show that linear production functions, each depending upon at most one variable, su ce to reach universality for both computing modes. As a byproduct, we propose some small deterministic universal enzymatic numerical P systems

    Complete Problems for a Variant of P Systems with Active Membranes

    Get PDF
    We identify a family of decision problems that are hard for some complexity classes defined in terms of P systems with active membranes working in polynomial time. Furthermore, we prove the completeness of these problems in the case where the systems are equipped with a form of priority that linearly orders their rules. Finally, we highlight some possible connections with open problems related to the computational complexity of P systems with active membranes

    Introducing a Space Complexity Measure for P Systems

    Get PDF
    We define space complexity classes in the framework of membrane computing, giving some initial results about their mutual relations and their connection with time complexity classes, and identifying some potentially interesting problems which require further research

    Decomposition and factorisation of transients in Functional Graphs

    Full text link
    Functional graphs (FGs) model the graph structures used to analyze the behavior of functions from a discrete set to itself. In turn, such functions are used to study real complex phenomena evolving in time. As the systems involved can be quite large, it is interesting to decompose and factorize them into several subgraphs acting together. Polynomial equations over functional graphs provide a formal way to represent this decomposition and factorization mechanism, and solving them validates or invalidates hypotheses on their decomposability. The current solution method breaks down a single equation into a series of \emph{basic} equations of the form A×X=BA\times X=B (with AA, XX, and BB being FGs) to identify the possible solutions. However, it is able to consider just FGs made of cycles only. This work proposes an algorithm for solving these basic equations for general connected FGs. By exploiting a connection with the cancellation problem, we prove that the upper bound to the number of solutions is closely related to the size of the cycle in the coefficient AA of the equation. The cancellation problem is also involved in the main algorithms provided by the paper. We introduce a polynomial-time semi-decision algorithm able to provide constraints that a potential solution will have to satisfy if it exists. Then, exploiting the ideas introduced in the first algorithm, we introduce a second exponential-time algorithm capable of finding all solutions by integrating several `hacks' that try to keep the exponential as tight as possible

    An Optimal Frontier of the Efficiency of Tissue P Systems with Cell Division

    Get PDF
    In the framework of tissue P systems with cell division, the length of communication rules provides a frontier for the tractability of decision problems. On the one hand, the limitation on the efficiency of tissue P systems with cell division and communication rules of length 1 has been established. On the other hand, polynomial time solutions to NP–complete problems by using families of tissue P systems with cell division and communication rules of length at most 3 has been provided. In this paper, we improve the previous result by showing that the HAM-CYCLE problem can be solved in polynomial time by a family of tissue P systems with cell division by using communication rules with length at most 2. Hence, a new tractability boundary is given: passing from 1 to 2 amounts to passing from non–efficiency to efficiency, assuming that P ̸= NP.Ministerio de Ciencia e Innovación TIN2009-13192Junta de Andalucía P08 – TIC 0420
    corecore